The Design of Index-based Flood Insurance

Dr. Zhiwei Shen

Department of Agricultural Economics Humboldt-Universität zu Berlin

Workshop on "Enhancing the benefits of Remote Sensing Data and Flood Hazard Modelling in Index-based Flood Insurance(IBFI)"

August 1, 2015

Contents

- 2 Agricultural Insurance Products
- 3 Development of Index-based Flood Insurance
- Identification of Pilot Location
- 5 Conclusion

Farm Management Group

Team

- Head: Prof. Dr. Martin Odening
- Researchers: Dr. Matthias Ritter, Dr. Günter Filler, Dr. Zhiwei Shen
- Research Expertise: Risk management, especially climate risks, Investment and finance, Structural change in Agriculture

Related Research Projects and Publications

- Weather Risk Management (DFG), INKA-BB: insurance and climate change
 - Systemic Weather Risk and Crop Insurance: The Case of China. (Journal of Risk and Insurance)
 - Management of Climate Risks in Agriculture (Applied Economics)
 - Pricing Rainfall Futures at the CME. (Journal of Banking and Finance)
 - Can Expert Knowledge Compensate for Data Scarcity in Crop Insurance Pricing? (ERAE)
- Risk Management Tools for Wind Power Industry
 - Designing an Index for Assessing Wind Energy Potential. (Renewable Energy)

Farm Management Group

Agricultural Insurance Products Development of Index-based Flood Insurance Identification of Pilot Location Conclusion

Weather Risk

Germany 2013

USA 2012

Zhiwei Shen The Design of Index-based Flood Insurance

Rainfall Index Insurance

Table : Rainfall insurance for wheat producers in Brandenburg, Germany (ha)

	Option 1	Option 2
Rainfall index	Cumulative rainfall	Rainfall deficit
Accumulation	June	April-June
Calculation	$I^c = \sum_{t=1}^{30} R_t$	$I^{d} = \sum_{ au=1}^{13} \min(0, \sum_{t=(au-1)\cdot 7+1}^{ au\cdot 7} R_{t} - 7.4)$
Strike level <i>S</i>	144.3mm	-29.4mm
Tick size V	1.4€/ index point	13.5€/ index point
Payoff <i>P</i>	$max(144.3-\mathit{I^c},0)\cdot 1.4$	$\max(-29.4 - I^d, 0) \cdot 13.5$

Farm Management Group

Agricultural Insurance Products Development of Index-based Flood Insurance Identification of Pilot Location Conclusion

Wind Index

ndemnity-based Insurance ndex-based Insurance

Contents

- Agricultural Insurance Products Indemnity-based Insurance Index-based Insurance
- Oevelopment of Index-based Flood Insurance
- 4 Identification of Pilot Location
- 5 Conclusion

ndemnity-based Insurance ndex-based Insurance

Agricultural Insurance Products

Indemnity-based Insurance Index-based Insurance

Indemnity-based Insurance

Concept: Indemnity payments are based upon actual losses incurred.

Named peril crop insurance: Hail Insurance

- Perils: hail, fire (suited to localized, independent perils)
- Measure % damage in field; pre-agreed sum insured; operated in private sector; generally unsubsidised.
- Benefits: transparent loss assessment, manageable adverse selection and moral hazard
- Challenges: individual loss assessment; assessment cost in small farmers; not suited to complex perils.

Indemnity-based Insurance Index-based Insurance

Indemnity-based Insurance

Concept: Indemnity payments are based upon actual losses incurred .

Multiple peril crop insurance

- Perils: a wide list of perils
- Measure yield loss compared to a % of average yield; highly subsidised; public-private-partnership (PPP).
- Benefits: easy to understand; limited technical adaptation required for different crops; indemnifies each farmer based on yield.
- Challenges: individual farmer loss assessment; adverse selection and moral hazard; poor data for yield history; high administrative cost; not suited where farms are small.

Indemnity-based Insurance Index-based Insurance

Agricultural Insurance Products

Indemnity-based Insurance Index-based Insurance

Index-based Insurance

Concept: Indemnity payments are based on objectively observable indices.

Weather-index Insurance

- Perils: rainfall deficit and excess; high or low temperatures
- Payouts based on weather station measurement
- No adverse selection and moral hazard; no individual loss adjustment; transparent, objective data
- Challenge: Basis risk; setting up index is complex; need good meteorological and agronomic data as well as crop modelling;

Fheoretical model Example of rainfall index insurance Designing flood index insurance

Contents

Farm Management Group

2 Agricultural Insurance Products

Overlaps Development of Index-based Flood Insurance

Theoretical model Example of rainfall index insurance Designing flood index insurance

Identification of Pilot Location

5 Conclusion

Theoretical model Example of rainfall index insurance Designing flood index insurance

Index-based Flood Insurance

The index insurance framework:

- Find an flood index *I*: cumulative rainfall, inundated area, flood duration, depths, water level (e.g. Sirajganj flood insurance) or combined index.
- Relation between crop yield and index

$$y = g(I) + \epsilon \tag{1}$$

y: crop yields; $g(\cdot)$: a function estimating the relation between yield and index; ϵ : error term indicating the basis risk.

Payoff function

$$P(I) = V \cdot max\{0, S - I\}$$
⁽²⁾

I: index; P: insurance payout; S: strike level; V: tick size.

Theoretical model Example of rainfall index insurance Designing flood index insurance

Design Index-based Flood Insurance

Estimating yield-index relation $g(\cdot)$

- Index form:
 - Single index: cumulative rainfall or excessive water level
 - Combined or transformed index to best fit the yield; e.g.,

Weather-Yield
$$Y_{corn} = \alpha_0 + \alpha_1 \mathbf{R} + \alpha_2 \mathbf{T} + \alpha_3 \mathbf{R}^2 + \alpha_4 \mathbf{T}^2 + \alpha_5 \mathbf{RT} + \epsilon$$

Wind speed-Wind power
$$f(WS; a, b, c, d, g) = d + \frac{a-a}{(1 + (\frac{WS}{c})^b)^g} + \epsilon$$

- Estimation technique
 - Standard Ordinary Least Squares
 - Bayesian estimation
 - Extreme theory e.g., quantile regression

Theoretical model Example of rainfall index insurance Designing flood index insurance

Design Index-based Flood Insurance

Modelling the index $I \rightarrow$ Pricing the index insurance

The distribution of the index I is crucial to the assessment of insurance product. Its distribution influences the revenue distribution through the payoffs and also determines the cost of insurance. i.e., the price (F).

- Burn Analysis $F = exp(-r \cdot T) \cdot \left[\frac{1}{n} \cdot \sum_{t=1}^{n} P(I_t)\right]$
 - \rightarrow based on empirical distribution of index
- Index Value Simulation Statistical model for index
 - \rightarrow Parameters of distribution can be estimated from historical data
 - \rightarrow Index are randomly drawn to determine the price.
- Daily Value Simulation

 \rightarrow A statistical model for stochastic process of the underlying variable (e.g. daily rainfall or water level)

Theoretical model Example of rainfall index insurance Designing flood index insurance

Rainfall Index Insurance

Rainfall index insurance for grain producers in Northeast Germany:

• Specification of Rainfall Index:

Rainfall sum:

$$I^c = \sum_{t=1}^T R_t$$

Rainfall deficit:

$$I^d = \sum_{t=1}^T \min(0, \sum_{ au=(t-1)\cdot s+1}^{ au\cdot s} R_t - R^{\min})$$

This index measures the shortfall of the rainfall sum in an s-days relative to a reference level R^{\min} .

Theoretical model Example of rainfall index insurance Designing flood index insurance

Rainfall Index Insurance

• Estimation of Yield-index Relation $g(\cdot)$

A linear-limitational (Leontief) production function to specify the relationship between rainfall index and wheat yield:

$$g(I) = \begin{cases} a_0 + a_1 \cdot I + \epsilon & \text{if } I < a_2 \\ a_3 + \epsilon & \text{Otherwise} \end{cases}, \quad \epsilon \sim N(0, \sigma_\epsilon)$$

• Maximum likelihood estimation to determine the parameter estimates. Best fit (highest R^2) leads to favour rainfall deficit index for April to June.

Theoretical model Example of rainfall index insurance Designing flood index insurance

Rainfall Index Insurance

• Pricing index

- Burn analysis (historical empirical data)
- Index value simulation: Daily rainfall model

$$R_t = \underbrace{r_t}_{t} \cdot \underbrace{X_t}_{t}$$

amount occurance

$$X_t = \begin{cases} 0 & \text{if no rain} \\ 1 & \text{if rain} \end{cases}$$

Transition probabilities:

$$p_t^{01} = \Pr{\{X_t = 1 | X_{t-1} = 0\}}$$

 $p_t^{11} = \Pr{\{X_t = 1 | X_{t-1} = 1\}}$

Rainfall amount r_t follows mixed exponential distribution:

$$f[r_t] = \frac{\alpha_t}{\beta_t} \exp[\frac{-r_t}{\beta_t} + \frac{1 - \alpha_t}{\gamma_t} \exp[\frac{-r_t}{\gamma_t}]$$

Theoretical model Example of rainfall index insurance Designing flood index insurance

Diagram of Pricing Index-based Flood Insurance

Contents

- 2 Agricultural Insurance Products
- 3 Development of Index-based Flood Insurance
- Identification of Pilot Location

5 Conclusion

Exposure of Floods

Average Rainfall Amount and Inundated Area

Exposure of Floods

Average Days of Rainfall and Inundation

Potential Insurance Demand

Affected Crop Area and People

Potential Insurance Demand

Identification of Pilot Location

Potential pilot locations: Muzaffarpur, East Champaran, Katihar, The following reasons:

- High exposure to flood risk
- High potential rice insurance demand given high rice production
- Better data quality
- Accessibility to farmers and fields

Table : Flood exposure and crop losses in flood years								
	Muzaffarpur		East Champaran		Katihar			
	mean	std.	mean	std.	mean	std.		
R. Area (km²)	1070.7	338.6	1237.5	297.2	1277.5	253.5		
I. Area (km²)	1750.2	1530.4	1138	702.8	1611.2	367.2		
Crop loss (M. Rs.)	216.9	343.6	382.5	254.9	62.5	61.6		

Table : Flood exposure and crop losses in flood years

Conclusion

- Agricultural Insurance Products
 - \rightarrow Indemnity-based Insurance
 - \rightarrow Index-based Insurance for special risk and small households
- Design of Index-based Flood Insurance
 - \rightarrow Estimating yield-index relation
 - \rightarrow Modelling the index
- Identification of Pilot Location
 - \rightarrow Muzaffarpur, East Champaran, Katihar

The End

Questions? Comments?

Dr. Zhiwei Shen Department of Agricultural Economics Humboldt-Universität zu Berlin Philippstr. 13, House 12a, 10115 Berlin Website: http://u.hu-berlin.de/shen Email: zhiwei.shen@agrar.hu-berlin.de